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ABSTRACT

We argue that inner rings in barred spiral galaxies are associated with specific 2D and 3D
families of periodic orbits located just beyond the end of the bar. These are families located
between the inner radial ultraharmonic 4:1 resonance and corotation. They are found in
the upper part of a type-2 gap of the x1 characteristic, and can account for the observed ring
morphologies without any help from families of the x1-tree. Due to the evolution of the stability
of all these families, the ring shapes that are favoured are mainly ovals, as well as polygons
with ‘corners’ on the minor axis, on the sides of the bar. On the other hand, pentagonal rings,
or rings of the NGC 7020-type hexagon, should be less probable. The orbits that make the
rings belong in their vast majority to 3D families of periodic orbits and orbits trapped around

them.
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1 INTRODUCTION

Rings are often observed in barred galaxies and can be spectacular
structures. They come in three kinds: nuclear rings, near the nucleus
of the galaxy; inner rings, surrounding the bar; and outer rings, of a
considerably larger diameter. In this paper we focus our attention to
the study of the inner rings. Buta (1995, hereafter B95) has made a
statistical study of 3692 ring galaxies in the southern hemisphere, as
well as more in-depth studies of specific objects (e.g. Buta, Purcell
& Crocker 1996; Buta & Purcell 1998; Buta et al. 1999, 2001). He
found that inner rings are a frequently encountered feature of barred
galaxies. Their mean axial ratio is 0.84 % 0.10, elongated along
the bar major axis. This ratio, however, varies from one galactic
type to another as well as among different ring morphologies (see
table VII in Buta & Combes 1996). In some cases of typical inner
rings the axis ratio can be as low as 0.63 (NGC 6782) or even 0.49
(A0106.7—3733) (Buta 1986). B95 mentions a dozen galaxies for
which there could be an intrinsic misalignment between the bar and
the inner ring. Because of projection effects, however, spectroscopic
measurements are necessary in order to confirm this misalignment.
In the vast majority of cases the inner ring encircles the bar and
touches its extremities. There are, however, cases where the bar
underfills what appears to be an inner ring. Buta (1986) mentions
30 such cases in his sample of 1200 objects. Two typical examples
are also given by B95, namely NGC 7098 and NGC 3450.

The link between rings and resonances was already made in the
1970s (e.g. Schommer & Sullivan 1976). Ittook, however, the advent
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of test particle hydrodynamic simulations in the 1980s to establish
it fully. In particular, Schwarz (1981, 1984a) followed the response
of gas, modelled by sticky particles, to a bar forcing. He found
that ring structures can form, and that, as in real galaxies, they can
be classified into outer, inner and nuclear rings. Schwarz linked the
outer rings to the outer Lindblad resonance (OLR), the inner rings to
the inner 4 : 1 resonance or inner ultraharmonic resonance (iUHR),
and the nuclear rings to the inner Lindblad resonance (ILR). The
first statistical arguments came from Athanassoulaetal. (1982) who,
using the sample of de Vaucouleurs & Buta (1980), showed that the
ratios of inner to outer ring sizes is compatible with the outer ring
being at the OLR and the inner one at corotation, or at the iUHR.
These statistics have since been repeated (B95), using much better
observational samples, but the result did not change.

Rings form by gas accumulation at resonances (e.g. Buta 1999,
and references therein), and this explains their predominance on im-
ages of galaxies which show best the sites of Population I objects. It
is, however, now clear (Athanassoula 1992b) that the gas response
is determined to a large degree by the periodic orbits in the underly-
ing gravitational potential. For this reason, understanding the orbital
dynamics of rings is essential not only for understanding their mor-
phology per se, but also for understanding properties related to the
gas component, e.g. star formation.

One of the main uses of orbital structure studies is that they pro-
vide information on the orbits that are the backbone of the various
galactic structures, and thus on their morphologies. Studying the
orbital structure in an appropriate Hamiltonian system we get the
periodic orbits that could be responsible for the appearance of mor-
phological features of real galaxies. We are thus interested only in
stable periodic orbits, since they trap around them the regular orbits
of the system. While in 2D bar models the backbone of the bar is
a single family, namely the family x1 (Contopoulos 1983), in 3D
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models the orbits supporting the bar are related to a whole tree of
families of periodic orbits, which we called an ‘x1-tree’ (Skokos,
Patsis & Athanassoula 2002a). Under the assumption that bars are
fast, their ends should be close and within corotation (Contopoulos
1980). Due to the fact that inner rings surround the bar, one intu-
itively links them to stable orbits not belonging to the x1-tree, but
occupying the area just beyond the bar in real space.

Although an association of a resonance location to an inner ring
can be easily made in a first approximation, there is so far no detailed
study relating the various observed morphologies of inner rings to
the orbital dynamics at their region. As Buta remarks ‘... rings
include information on ... the properties of periodic orbits’ (Buta
2002). This information has not been registered until now, especially
for 3D barred models, and this is exactly what gave us the motivation
for the present paper.

Inner rings can be either smooth, in which case we refer to them
with the generic name of ‘oval’, or they can have characteristic ‘an-
gles’, or ‘kinks’, or ‘corners’ in their outline. These can be more
or less strong and, depending on their strength, may give the ring
a polygonal, rather than oval, geometry. They occur at character-
istic locations along the ring. Thus such ‘corners’, or ‘density en-
hancements’ often occur near the bar major axis, giving the ring
a ‘lemon-like’ outline. In other cases, we observe that the ring is
squeezed along the major axis of the bar, so that the tips of the
‘lemon’ structure vanish, the ring becomes rather polygonal-like
with sides roughly parallel to the bar’s minor axis at its apocentra,
and ‘corners’ close to the minor axis. Typical examples are UGC
12646 (e.g Buta & Combes 1996 — fig. 17), IC 4290 (see the dis-
tribution of the H 11 regions in Buta et al. 1998 — fig. 8) and NGC
3351 (e.g. Sandage & Bedke 1994, panels 168, 170). In such cases
it is reasonable to speak roughly about a hexagon with two sides
parallel to the minor axis of the bar. The above-mentioned objects
(UGC 12646, IC 4290 and NGC 3351) are typical examples. Nev-
ertheless, in most cases all these features characterize only parts of
the rings and perfect symmetry, e.g. with respect to the bar major
axis, is not always observed.

Despite the complexity of the observed structures of the inner
rings, and the fact that they are located outside the bar, they have
been in general vaguely associated with orbits at the inner 4: 1
resonance (Schwarz 1984b; Buta 1999, 2002). Schwarz (1984b)
had already realized the presence of squeezed ovals with corners.
He was, however, able to reproduce them only in the case of weak
bars, or by invoking a lens-like component (Schwarz 1985). Buta
(2002, fig. 3) invokes combinations of diamond- with barrel-like
orbits to explain ring morphology. In particular barrel-like orbits
have been considered necessary in order to provide cloud—cloud
collisions on the sides of the bars (the regions where the cloud-
cloud collisions happen are indicated with ‘C’ in Schwarz 1984b).
These orbits help in the formation of rings which have a hexagonal
rather than diamond-like geometry and have two of the sides more
or less parallel to the minor axis of the bar.

Note that not every diamond-like, nor all hexagonal orbits are nec-
essarily related to inner rings. For example, the planar diamond-like
x1 orbits in fig. 62 in Buta & Combes (1996), taken from Contopou-
los & Grosbgl (1989), are far away from the end of the bar, which
is close to corotation. We also note that hexagonal rings with cusps
on the major axis of the bar, and thus with two sides parallel to the
major axis of the bar, are rare. There is only a notable example of
this morphology, namely NGC 7020, studied by Buta (1990).

In the present paper we study the orbital behaviour at the re-
gion where the appearance of inner rings is favoured. We do this
in the case of 3D Ferrers bars. Studying the energy width over

Figure 1. Examples of the four ring morphologies discussed in the paper.
(a) The oval with cusps on the major axis (NGC 6782), (b) a typical oval-
polygonal ring with sides parallel to the minor axis of the bar close to the
ends of the bar (IC 4290), (c) a pentagonal ring in NGC 3367 and (d) the
hexagonal ring with cusps on the major axis (NGC 7020). At the bottom
left-hand corner of each panel there is a sketch indicating schematically the
corresponding morphology.

which the various families of periodic orbits exist, their morphol-
ogy, and mainly their stability, we identify the orbital behaviour
in four archetypical morphologies of inner rings. In Section 2 we
present these structures in the cases of four galaxies. In Section 3
we give a brief description of the model we use for our orbital cal-
culations, while the families which build the rings are described in
Section 4. Finally we discuss our results in Section 5 and enumerate
our conclusions in Section 6.

2 RING MORPHOLOGY

Let us first introduce four inner ring morphologies. Two of them
are typical ovals and the other two are exceptional cases of inner
rings. Although the images' shown in Fig. 1 are not of high resolu-
tion, they are nevertheless able to demonstrate the features we refer
to. Most inner rings are oval, sometimes with a somewhat lemon
shape because of density enhancements at the bar major axis. We
illustrate this latter type in Fig. 1(a) with an image of NGC 6782.
The isophotes peak on the major axis, indicated with arrows on the
second outermost isophote, giving to the ring a cuspy or pointed
oval morphology. There are no ‘corners’ close to the minor axis
of the bar, which would have given to the ring a diamond shape.
In Fig. 1(b) we show IC 4290 which has an oval ring with charac-
teristic breaks or corners. These are indicated with arrows on the
overplotted isophotes. The outermost isophote is again oval-shaped
and even slightly pointed close to the major axis. The oval, however,

! The image of NGC 6782 originates from an STScl Hubble Space Telescope
image. It can be viewed in high resolution at several web sites. The other three
are DSS images. The image of NGC 7020 in Fig. 1(d) has been deprojected.
The deprojected, as well as other images of the NGC 7020 hexagon, can be
seen in Buta (1990).
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is not smooth and forms, or gives the impression of, angles. One can
also discern a structure in the form of an ‘T’ with the vertical part
of the symbol being the bar. The two other rings given in Fig. 1 are
exceptional cases. The ring in Fig. 1(c) has an almost pentagonal ge-
ometry. It is observed in an image of NGC 3367. It can be described
as a pseudo-ring, since the ring appears to be made of segments of
spiral arms. Finally in Fig. 1(d) we give a deprojected image of NGC
7020 (Buta 1990), which has a type of hexagonal ring with cusps on
the major axis of the bar and two sides parallel to it. The ‘corners’
are indicated with arrows. Of course the geometrical shapes we use
above are idealized and represent the complicated morphology of
inner rings only schematically. They are, nevertheless, most useful
as guiding lines, in the same way as perfect ellipsoids are useful for
describing bars.

3 MODEL

To calculate the 3D ring orbits we use the fiducial case of the
model described in detail in Skokos et al. (2002a). It consists of
a Miyamoto disc, a Plummer bulge and a Ferrers bar. The potential
of the Miyamoto disc (Miyamoto & Nagai 1975) is given by the
formula:
G Mp
Va2 +y2 4+ (A + VBT + 222

My, represents the total mass of the disc, G is the gravitational con-
stant, and A and B are scalelengths such that the ratio B/A gives a

measure of the flatness of the model.
The bulge is a Plummer sphere, i.e. its potential is given by:

M
D5 = — G Ms 2

VY€l
where ¢ is the bulge scalelength and Mj is its total mass.
Finally, the bar is a triaxial Ferrers bar with density p(x):

®p =

M

105 M,
BA—m?? for m<1
p(m) = 32mabc 3)
0 for m > 1,
where
2 2 2
y X Z
m2=;+ﬁ+§ a>b>c. “)

In the above a, b, ¢ are the principal semi-axes, and Mg is the
mass of the bar component. The corresponding potential &g and
the forces are given in Pfenniger (1984) in closed form, well suited
for numerical treatment. For the Miyamoto disc we use A = 3 and
B = 1, and for the axes of the Ferrersbarwe seta:b:c=6:1.5:0.6.
The masses of the three components satisfy G(Mp +Ms + M) = 1.
We have GMp = 0.82, GMg = 0.08, GMg = 0.10 and ¢, = 0.4.

The length unit is taken as 1 kpc, the time unit as 1 Myr and the
mass unit as 2 x 10" M. The bar rotates with a pattern speed €2, =
0.054 around the z-axis, which corresponds to 54 km s~! kpc~!, and
places corotation at 6.13 kpc.

4 ORBITS

The Hamiltonian governing the motion of a test particle in our sys-
tem can be written in the form:

Hol (e _ Ghtopy - s
=5 (P+ Py +12) + V(3,2 = Qxpy = ), )
where p,, p, and p, are the canonically conjugate momenta of x, y

and z respectively and V(x, y, 7) is the total potential of the combined
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three components of the model: disc, bar and bulge. We will hereafter
denote the numerical value of the Hamiltonian by E; and refer to it
as the Jacobi constant or, more loosely, as the ‘energy’.

A periodic orbit in a 3D Hamiltonian system can be either stable
(S) or exhibit various types of instability. It can be simple unstable
(U), double unstable (D) or complex unstable (A) (for definitions
see Contopoulos 2002, Chapter 2.11). The method used for finding
periodic orbits and their stability is described in detail in Skokos et
al. (2002a) and in references therein. Periodic orbits are grouped in
families, along which the energy Ej changes and the stability of the
orbits may also change. The S — U transitions of periodic orbits
are of special importance for the dynamics of a system, since in
this case a new stable family is generated by bifurcation. A useful
diagram for presenting the various periodic orbits of the system is
the ‘characteristic’ diagram (Contopoulos 2002, Section 2.4.3). It
gives the x-coordinate of the initial conditions of the periodic orbits
of a family as a function of their Jacobi constant Ej. In the case
of orbits lying on the equatorial plane (z = p, = 0) and starting
perpendicular to the x-axis (p, = 0), with y = 0 and p, > 0, we
need only one initial condition, x, in order to specify a periodic orbit
on the characteristic diagram. Thus, the initial conditions of such
orbits are fully determined by a point on the characteristic diagram.
Initial conditions of orbits which stay on the equatorial plane but do
not start perpendicular to the x-axis and of orbits which do not stay
on the equatorial plane are not fully defined by their x-coordinate. In
these, more general cases, the representation on the (Ej, x) diagram
is not very useful.

In our model, the highest-energy orbits that support the bar can be
found at the region of the radial 4 : 1 resonance (Skokos et al. 2002a;
Patsis, Skokos & Athanassoula 2003). Since the rings surround the
bars, we first look for families of periodic orbits beyond the energy
which corresponds to this resonance and we follow their stability
as we approach corotation. Athanassoula (1992a) has found several
families of orbits beyond the 4 : 1 resonance in 2D Ferrers bars (see
figs 2 and 3 of that paper). We did not know, however, which of those
could trap matter around them and support ring structures, because
their stability was not studied in that paper. We address this problem
here in the more general case of a 3D Ferrers bar.

4.1 The f group

In all 3D Ferrers bars studied by Skokos et al. (2002a) and Skokos,
Patsis & Athanassoula (2002b) the characteristic of the x1 family has
x values which increase with E; until a maximum is reached, at which
point the x values start decreasing. Beyond the local maximum we
find the characteristics of other families, which for larger Ej have
initial x’s which are larger than those of x1. In other words, we
have type-2 gaps (Contopoulos & Grosbgl 1989). In 2D models of
barred galaxies the family found beyond the local maximum is the
family x;(2) (fig. 3.8(b) in Contopoulos 2002). In our 3D models
the first family we find beyond the gap is a 2D 4: 1 family, which
we call f. Its morphology is rhomboidal as the morphologies of the
corresponding families of the 2D models in Contopoulos & Grosbgl
(1989) and Athanassoula (1992a). However, in the 3D model, it is
accompanied by a forest of bifurcating families. We call this group
of families of periodic orbits the ‘f group’.

In Fig. 2 we give the (Ej, x) characteristic of f, which is the small
curve above the x1 characteristic indicated with f. The lower part
of the curve, i.e. smaller x for the same Ej, is composed mainly
of stable f orbits. Nevertheless, instability strips do exist, but are
not important. The upper part of the curve is mainly composed
of unstable orbits. In the figure black segments indicate stability
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Figure2. Characteristic diagram of families x1, fand s. We observe a typical
type-2 gap at the radial 4 : 1 resonance region. Stable parts are indicated with
black lines and unstable ones with grey lines. The capital letters A—F, as well
as U, indicate the location of specific orbits which are discussed further in
the text. In this diagram L4 5 would be at ~ (—0.1955, 6.0).

and grey instability. For the sake of clarity we do not include in
the figure the projections of the characteristics of the 2D and 3D
families bifurcating from f.

The ‘mother’ planar 2D f family starts existing at about E; ~
—0.20166, and the morphology of its orbits is as in Fig. 3(a). It re-
mains basically stable until E; ~ —0.198, with only small instability
regions in between. With increasing energy, the morphology of the
f orbits changes and becomes hexagonal (Fig. 3b). We thus have a
smooth transition from a basically 4:1 to a 6: 1 morphology. The
two points marked ‘A’ and ‘B’ on the stable part of the characteristic
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Figure 3. 2D f orbits. In (a) and (b) we have stable f orbits located at points
‘A’ and ‘B’ on the f characteristic in Fig. 2. In panels (c) and (d) we give
typical stable fr1 and fr2 orbits. In this and subsequent figures the bar major
axis lies along the y-axis and the units are in kpc.
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Figure 4. A 2D unstable f orbit from the upper part of the f characteristic
(drawn with a grey line in Fig. 2).

indicate the location of the two f orbits shown in Figs 3(a) and (b),
respectively. Beyond E; ~ —0.198 the orbital multiplicity, i.e. the
number of intersections of the periodic orbit with the x-axis before it
closes, changes. At an S—U—S transition close to E; ~ —0.2004
we have two 5: 1-type 2D families bifurcated from f. Namely, frl
(Fig. 3c) at an S— U transition, and fr2 (Fig. 3d) at the nearby U—S
transition. We note that fr1 orbits do not start perpendicular to the
x-axis. For these and all the rest of the bifurcating families in the
paper we follow the nomenclature rules introduced in Skokos et al.
(2002a). Soon after its bifurcation, however, the stable fr1 family be-
comes unstable, while the initially unstable fr2 becomes stable. The
f orbits along the unstable part of the characteristic are diamonds
with cusps on the axes (Fig. 4). These orbits are characterized by
segments, which resemble straight line sides.

Stable 3D families are introduced at S— U transitions of the fam-
ily f at E; ~ —0.2016, —0.2002 and —0.1993, and are the families
fvl, fv3 and fv5, respectively. These families, together with their
stable bifurcations, contribute significant stable parts to the area.
The three projections of five orbits of 3D families of the f group
are given in Fig. 5. The two orbits at the top of the figure belong to
family fv1, for E; = —0.201 and —0.181 respectively, and show that
the morphological evolution of the (x, y) projection of this family
follows the morphological evolution of the 2D family f. The third
and fourth rows from the top give the morphology of orbits from
two bifurcations of family fv1, which in turn has bifurcated from
family f. They are introduced in the system as stable, but do not have
large stability parts, since they become soon unstable. The fifth and
sixth orbits from the top belong to family fv3, and are given for
E; = —0.200 and —0.193, respectively. The morphology of their
(x, ¥) projections is again similar to the morphology of a 2D f-type
family (Figs 3a and b) of the same energy. Finally the last orbit is an
example of an orbit from family fv5, close to its bifurcating point.
We note that fv5 becomes complex unstable at E; = —0.19697. At
this energy it already has large deviations above and below the equa-
torial plane, i.e. large |z| values, and thus it would not contribute
significantly to the local disc density, even if it were stable.

4.2 The s group

In Fig. 2 we see that, below and to the right of the characteristic
of f, there is another, longer curve, roughly speaking parallel to the

© 2003 RAS, MNRAS 346, 1031-1040
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Figure 5. Stable 3D f orbits. The names of the families are noted on the
right side of each set of projections. The projection planes are indicated in
the upper left corner of each frame.

decreasing branch of x1. This is the characteristic of a 2D 6: 1 fam-
ily, which we call s’. It exists for Ej > —0.1990. As in the case of
the f group, we have here a group of families of periodic orbits (the
s group). The group includes s and several 2D and 3D families bi-
furcated from it. The stable part is the one with the larger x’s for the
same energy. As in the previous case, along the stable part we have
a morphological evolution of the orbits and tiny instability strips,
where new families are born. We can follow the morphological evo-
lution of the s family of orbits in Fig. 6 from (a) to (b) and to (c).
They correspond to the points labelled on the characteristic of s in
Fig. 2 with the capital letters ‘C’, ‘D’ and ‘E’, respectively. Along

© 2003 RAS, MNRAS 346, 1031-1040

the characteristic of s we have a smooth transition from a basically
6:1to an 8: 1 morphology. An S— U transition at Ej ~ —0.19876
introduces in the system the planar stable family sr1 (Fig. 6d), which
is a 7:1 type orbit. Along the long unstable part of the s character-
istic, orbits are hexagonal with cusps on the major axis of the bar
(Fig. 6¢). Family s has another stable part at the largest E;j’s and
small x values (see Fig. 2). However, the morphology of the s orbits
at these energies is characterized by big loops (Fig. 6f), so that they
cannot be used to build rings.

At three other S— U transitions with tiny unstable parts, at Ej ~
—0.19892, E; ~ —0.19869 and E; ~ —0.1984 respectively, three
stable 3D families bifurcate. From smaller to larger energies, we call
them svl, sv3 and sv5. Fig. 7 gives the morphology of these families.
In Fig. 7(a) we observe the three projections of svl close to its
bifurcating point. In Fig. 7(b) we give sv3 also close to its bifurcating
point and in Fig. 7(c) at larger energies. Finally Fig. 7(d) shows sv5
just after its bifurcation from s. The morphological evolution of
the face-on projections of the 3D families resembles the evolution
of the stable s orbits as the energy increases. Both sv3 and sv5
families have complex unstable parts, starting from E; ~ —0.19424
and Ej ~ —0.1972 respectively. However, as in the case of fv5,
this happens at energies where |z] is large, and thus the orbits of
these families at these energies are not significant for the local disc
density.

5 DISCUSSION

In 3D Ferrers bars, families of periodic orbits beyond the gap at the
4 : 1 radial resonance, where the characteristic of the planar x1 fam-
ily has a local maximum (Fig. 2), are introduced through tangent
bifurcations (see Contopoulos 2002, p. 102 for a definition). Tan-
gent bifurcations are fundamental to the study of nonlinear systems
since they are one of the most basic processes by which families
of periodic orbits are created. In 2D barred potentials they corre-
spond to the gaps at the even radial resonances (Contopoulos &
Grosbgl 1989). In such a bifurcation a pair of families of peri-
odic orbits is created ‘out of nothing’. They are also referred to
as saddle-node bifurcations. One of the newborn sequences of or-
bits is unstable (the saddle), while the other is stable (the node). A
characteristic diagram of this type of bifurcation is shown schemat-
ically in Fig. 8. The characteristics of families f and s in Fig. 2
are of this type, which means that these families are not connected
to the x1-tree. Furthermore, they build their own group of fami-
lies, i.e. their own trees. Despite the fact that the stability is not
indicated, one can see from the shape of the characteristics that in
the 2D Ferrers bar model in Athanassoula (1992a) the families in
the upper part of the 4 : 1 resonance gap are introduced via tangent
bifurcations.

Close to the E; minimum at which the f and s families appear, the
orbits are characterized by 4 : 1 and 6 : 1 morphologies, respectively.
As we move along the stable branch towards higher values of E;,
the f orbits initially become rounder, and then for yet larger Ej, they
develop cusps along the minor axis of the bar, evolving morpholog-
ically, roughly speaking, to a hexagon. Note that this hexagon has
two sides parallel to the minor axis of the bar. The morphological
evolution of the stable s orbits forms a similar sequence, now from a
6:1 to an 8 : 1 morphology, again via an ovalish shape. Note, how-
ever, that the geometrical shape of the orbit depicted in Fig. 6(a)
changes very fast, i.e. the s orbits have this morphology only in a
very tiny energy interval. It evolves to a lens-type morphology and
finally to the octagonal shape we see in Fig. 6(c), which develops
loops along the major axis of the bar. In order to visualize a collective
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Figure 6. 2D orbits of the s group. From (a) to (b) and then to (c) we see the evolution of the orbital morphology along the stable branch of the s characteristic
as we move from ‘C’ to ‘D’ to ‘E’ (Fig. 2). In (d) we observe a planar stable srl orbit, in (e) an unstable s orbit (point U in Fig. 2), and in (f) a stable s orbit

with loops (point F in Fig. 2).

effect of the presence of such octagonal orbits in the system, we plot
in Fig. 9 successive orbits of this type selected at equally spaced in-
tervals in energy. This could lead to an octagonal ring or, most likely,
to a hexagonal ring with additional density enhancements close to
the major axis of the bar. The shapes of the rings that are favoured
due to the stability of the planar f and s orbits can be described in
general as ovals. Hexagonal morphologies support motion parallel
to the minor axis at the apocentra of the rings.

The 2D radial bifurcations from f and s are associated with the
5:1 and 7: 1 resonances, respectively. The corresponding 5: 1 and
7:1 families come in pairs, with orbits symmetric with respect to
the bar major axis. Thus, although they do have stable parts, they
do not in general support a particular morphology if we consider
both of their branches. Indeed, two 5: 1 symmetric periodic orbits
together represent a 10: 1 morphology. In this case, non-periodic
orbits trapped around them will practically contribute to the forma-
tion of a smooth ring around the bar. In cases where only one of the
two branches is populated, the ring will have a mainly pentagonal
or heptagonal geometry.

The existence of the 3D families is very important for the preva-
lence of a ring structure around the bar, because they extend the
volume of the phase space occupied by stable ring-supporting or-
bits. Such families are introduced at the S— U transitions of our
model and some of their members are plotted in Figs 5 and 7. Their
vertical thickness in the z-direction remains low for considerable en-
ergy intervals, at least for the orbits with face-on projections without

cusps or loops (Fig. 7). This is in good agreement with observations,
since inner rings have never been seen to stick out of the equatorial
plane in galaxies which are observed edge-on. These new fami-
lies remain practically stable for energy intervals over which their
face-on projections, and the corresponding f or s ‘mother’ families
support the ring. On the other hand, over the energy intervals where
these families are complex unstable, their face-on projections have
loops and their average height above the equatorial plane has also
increased. Since they are complex unstable they are not associated
with further bifurcating families (for definitions related with insta-
bilities in 3D systems see e.g. Contopoulos 2002). The presence of
complex instability introduces chaos in the system, however, at en-
ergies for which the families have members reaching large distances
above and below the equatorial plane. Thus their importance for the
density of the rings is already small.

The two groups of f and s families of periodic orbits include prac-
tically all relevant morphologies of orbits one can find between the
radial 4 : 1 resonance and corotation. Although we cannot exclude
the existence of n : 1(n > 8) type families, we found no such orbit
remaining close to the equatorial plane. Since, furthermore, the f
and s family orbits are sufficient on their own to account for the
rings, we do not discuss the n : 1(n > 8) orbits any further.

5.1 Interpretation of the ring morphologies

In this section we will show that inner ring morphologies can be built
using combinations of orbits of the stable 2D and 3D families which

© 2003 RAS, MNRAS 346, 1031-1040
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Figure 7. Stable 3D orbits of the s group. (a) orbit from the sv1 family, (b)
sv3 orbit close to the bifurcating point, (c) sv3 orbit away of the bifurcating

point, (d) orbit from the sv5 family.

Figure 8. Schematic representation of a tangent bifurcation. The family
starts existing for energies larger than Ep;p.

we described in the previous sections. Let us start with the most com-
mon morphologies. There is a large number of orbital combinations
allowing the formation of the types of rings illustrated in Figs 1(a)
and (b). The morphology of the s orbits that have an outline as that
shown in Fig. 6(b) renders well that of the most frequently encoun-
tered inner rings (Fig. 1a). This is still true if we add to them stable
svl and sv3 orbits, as those depicted in Figs 7(a) and (b), respec-
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Figure 9. A set of stable, octagonal s orbits. Note that, while the outer
boundary is octagonal, the inner boundary tends to a hexagonal shape.

tively. In order to demonstrate this, we give in Fig. 10(a) the face-on
profile of the weighted oval- or lemon-shaped orbits of families s for
—0.1990 < E; < —0.1985, sv1 for —0.1989 < E; < —0.1968 and
sv3 for —0.1987 < Ej < —0.1982 and —0.1976 < E; < —0.1958
(sv3 is simple unstable for —0.1982 < E; < —0.1976). These in-
tervals have been chosen so as to exclude all unstable orbits and all
orbits with [z| > 0.8. We consider orbits with |z| > 0.8 as contribut-
ing little to the ring density. We use the same technique as in Patsis,
Skokos & Athanassoula (2002) and Patsis et al. (2003). Namely,
we first calculate the set of periodic orbits which we intend to use
in order to build the profile. Then we pick points along each orbit
at equal time steps. The ‘mean density’ of each orbit (see Patsis
et al. 2002, Section 2.2) is considered to be a first approximation of
the importance of the orbit and is used to weight it. We construct
an image (normalized over its total intensity) for each calculated
and weighted orbit, and then, by combining sets of such orbits, we
construct the weighted profile. The selected stable orbits are equally
spaced in their mean radius. The step in mean radius is the same for
all families in a figure.

InFig. 10(a) we observe that all orbits of the s, sv1 and sv3 families
are confined inside a very narrow ring. Families sv1 and sv3 are 3D.
The orbits considered here are also vertically confined to a thin layer
of a few hundred pc having in the middle the equatorial plane of
the galaxy model. For this, and all subsequent similar figures, we
give in Table 1 the energy intervals from which we have taken the
orbits of a family in order to construct the profile. For building the
profile we used orbits from all the available energy intervals. Due to
the orbital crowding inside the ring, the orbits of the three families
intersect each other, and thus the corresponding gas flow will be
characterized by the presence of numerous cloud collisions in the
same area.

If we add, on top of this, orbits trapped around f, fvl and fv3, at
the appropriate energy intervals, the morphology of the ring does not
change significantly. In Fig. 10(b) we add stable orbits belonging to
the families f for small energies (—0.2016 < E; < —0.1993), fv1 for
—0.2016 < E; < —0.1974 and fv3 for —0.2002 < E; < —0.1967.
Again orbits with |z] > 0.8 are excluded. The total energy width
over which the oval-building orbits exist and specify the morphology
of the inner ring is AE; = 0.0058. The contribution of 2D families is
over a width AE; = 0.0028, while the 3D families support rings in
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Figure 10. Weighted profiles obtained from stable orbits of families s, sv1 and sv3 (a) and s, sv1, sv3, f, fvl and fv3 (b). In (c) we give a blurred representation
of (b) and we see clearly a polygonal structure embedded in the ring. Colour in this last frame gives the projected surface density. The orbits are chosen at the
appropriate energy intervals in order to support an oval-shaped ring.

Table 1. Energy intervals for the stable orbits contributing to the weighted profiles in Figs 10 and 12. The successive columns give the name of the
family and the corresponding energy intervals in Figs 10(a)—(c), and Figs 12(a) and (b).

Family 10(a) 10(b) 10(c) 12(a) 12(b)
s —0.1990 — —0.1985 —0.1990 — —0.1985 —0.1990 — —0.1985 - —0.1984 — —0.1972
svl —0.1989 — —0.1968 —0.1989 — —0.1968 —0.1989 — —0.1968 - -
sv3 —0.1987 — —0.1982 —0.1987 — —0.1982 —0.1987 — —0.1982 - -
—0.1976 — —0.1958 —0.1976 — —0.1958 —0.1976 — —0.1958
sv5 - - - - —0.1984 — —0.1972
f - —0.2016 — —0.1993 —0.2016 — —0.1993 —0.1990 — —0.1978 —0.1990 — —0.1978
fvl - —0.2016 — —0.1974 —0.2016 — —0.1974 - -
fv3 - —0.2002 — —0.1967 —0.2002 — —0.1967 - -
fv5 - - - —0.1993 — —0.1969 —0.1993 — —0.1969

an interval AE; = 0.0058. This indicates that 3D orbits are essential
in building inner rings. It is also evident that the width of the ring
in the face-on view is set by the contribution of orbits belonging to
the f tree. These orbits could be the origin of broader inner rings
observed in the near-infrared.

In Fig. 10(c) we apply a Gaussian filter to the image of Fig. 10(b),
in order to show, in a first approximation, the shapes of secondary
features which could be supported by the orbits discussed here.
The colour bar below it shows the correspondence of colours and
surface density on the ring. As we move to the right on the colour
bar the surface density increases. Colour helps in distinguishing the
main features supported by the orbits in our model. It is clear that,
depending on the family which prevails, we could have the following
cases:

(1) If the ring consists of s, svl and sv3 orbits at low energies
it will be an oval with a more or less strong lemon shape, i.e. a
morphology similar to that of the NGC 6782 inner ring.

(ii) If the families of the f tree are dominant, they will lead to
the appearance of more hexagonal-like oval structures with corners
close to the minor axis (like in UGC 12646).

(iii) A combination of all oval-supporting families leads to the
lemon-shaped oval, together with segments parallel to the minor axis
and corners close to the minor axis of the bar. This is the morphology
of the inner ring of IC 4290 and is represented in most of its details
in Fig. 10(c).

For the rings it is crucial that their width (in the equatorial plane)
is not too large and this is indeed the case in Fig. 10(c). In such a
blurred image the filtering simulates the effect of trapping around
the relevant periodic orbits. To show that the width of the Gaussian
that we have adopted for the filtering is reasonable, we examined the
ring structure formed by single regular orbits, trapped around the
periodic orbits discussed above. We found that it is well confined on
the face-on view of the model, as Fig. 11 shows. This is due to the na-
ture of the characteristic diagram in the region under consideration,
since there a small deviation in the initial conditions is sufficient to
stop the orbit from being trapped around the ring-producing peri-
odic orbits; i.e. the trapping around the periodic orbits, whenever it
happens, is of rather small extent. This means that the rings com-
posed of such orbits will have small width, in good agreement with
the observations.

In Fig. 12(a) we give another face-on weighted profile con-
sisting of stable orbits of the families f at energies —0.1990 <
E; < —0.1978 and fv5 at energies —0.1993 < E; < —0.1969.
In Fig. 12(b) we also add orbits from s for —0.1984 < E; <
—0.1972 and sv5 for —0.1984 < E; < —0.1972. This combina-
tion gives another type of ring, which can be described as polygo-
nal. The orbits, as we have seen in the description of the individual
families, are of 6:1 and 8:1 types. The overall polygonal mor-
phology, in Fig. 12(b), however, can be described as hexagonal.
The inner ring of NGC 3351 could be explained based on these
families.
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Figure 11. A single non-periodic orbit trapped around the stable s periodic
orbit at Ej = —0.0198176. It is integrated for more than 20 orbital periods. It
forms an oval of small width, the inner boundary of which is lemon-shaped.

The morphologies in Figs 1(c) and (d) can also be explained
with the stable orbits of the region, but only as specific cases, in
contrast to the many possible combinations of orbits we can use
for building the inner ring morphologies in Figs 1(a) and (b). A
5:1 morphology (Fig. 1c ) can be explained by combination of
orbits belonging to fr1 (Fig. 3c), or to fvl.1 (Fig. 5), or to both.
There are, however, two problems. First, as we noted before, we can
have a pentagonal symmetry when only one of the two symmetric
branches of the family is populated, which presumably necessitates
specific initial conditions. The second is that these families have
small stability regions. Both are bifurcated as stable and become
unstable for an energy close to the bifurcating point. For these two
reasons pentagonal rings like in the case of NGC 3367 should be
rare.

Hexagonal rings with cusps on the major axis of the bar can
be formed by material trapped around periodic orbits near the en-
ergy minimum of the tangent bifurcation which brings family s
in the system. Nevertheless, stable s orbits with the morphology
shown in Fig. 6(a) exist only in a very narrow energy interval. The

transition to the morphology of Fig. 6(b) happens very rapidly, while
the orbit in Fig. 6(e) is an example from the unstable branch of
the tangent bifurcation, which remains unstable for a large energy
interval. Indeed, these orbits become stable only when they have
developed large loops. The rarity of inner rings of the hexagonal
type seen in NGC 7020 (Buta 1990) reflects the way family s is
introduced in the system through the tangent bifurcation. The sta-
ble branch of this bifurcation is associated with the formation of
ovals, while the unstable one is associated with ‘NGC 7020-type’
hexagons. The morphology of the stable and the unstable orbits is
very similar only very close to the energy minimum of the s char-
acteristic. Thus, the hexagonal geometry we observe in NGC 7020
can be due only to non-periodic orbits trapped in this small frac-
tion of the phase space. Note that the inner side of many 2D and
3D banana-like orbits trapped around the Lagrangian points L4 and
Ls, considered in pairs, can also form hexagons (see Skokos et al.
2002a, figs 18 and 19). They cannot, however, explain rings, be-
cause of their orientation. If we consider at a given energy the two
stable banana-like orbits trapped around L4 and Ls, respectively, we
build a ring elongated along the minor axis of the bar rather than
around the major axis (Patsis et al. 2003, fig. 2), which is contrary
to observations.

Finally we note that NGC 6782 also gives an example of diamond
morphology in the bar, due to orbits with that shape, which is not
related to the ring. This can be realized by inspection of the inner-
most isophote drawn in Fig. 1(a). These isophotes may correspond
to x1 diamond-shaped orbits.

6 CONCLUSIONS

We have studied the orbital structure of inner rings in static 3D
Ferrers bars. The stable orbits we find belong to families which are
typical for barred potentials with a type-2 gap in their characteristic
at the radial 4 : 1 resonance. In 2D (Athanassoula 1992a) and 3D
(Skokos et al. 2002b) Ferrers bars this is the usual type of gap we
encounter. So we expect our conclusions to be valid for a large area
of the parameter space. This work is the first step in a study of
ring structures encountered in time-dependent, fully self-consistent
N-body, as well as in gaseous-response models.
The main conclusions of the present study are the following:

(i) In 3D Ferrers bars, inner rings are due to orbits belonging to
families in the upper part of the type-2 gap at the inner radial 4: 1
resonance. They are grouped in two orbital trees, which have as

T e : - _

S U |

Figure 12. Weighted profiles obtained from stable orbits of families f and fv5 of the f tree (a), and s, sv5, f, and fv5 (b). These are orbits at larger energies

than the orbits of the s, f families used for the weighted profiles in Fig. 10.
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mother families the planar f and s orbits. For building the rings one
cannot invoke orbits from the x1-tree or other families. The orbits
that make the rings belong in their vast majority to three-dimensional
families of periodic orbits.

(ii) The 3D bifurcating families of the two groups (fv1, fv3, fv5;
sv1,sv3, sv5) play a crucial role in the morphology of the inner rings.
They have large stable parts and thus they increase considerably the
volume of the phase space occupied by ring-supporting orbits. The
energy width over which we can find stable 3D orbits supporting the
rings is larger than the corresponding interval of 2D stable families.

(iii) The prevailing types of inner rings are variations of oval
shapes and are determined by the way the f and s families are in-
troduced in the system, i.e. by the tangent bifurcation mechanism.
The orbits on the stable branch of their characteristic, together with
their stable 3D bifurcations, support ovals with a more or less strong
lemon shape, or oval-polygonal rings with ‘corners’ along the mi-
nor axis of the bar. These types of inner rings represent frequently
observed morphologies.

(iv) Pentagonal rings are rare because the families building them
(fr1, fvl.1) have small stable parts and usually come in symmetric
pairs. Thus, in order for these rings to appear, the symmetry must
be broken and only one of the two branches can be populated due
to some particular formation scenario. Furthermore, considerable
material should be on regular non-periodic orbits trapped around
stable periodic orbits existing only in narrow energy ranges.

(v) If orbits are trapped around stable s periodic orbits at the en-
ergy minimum of the s characteristic, then an NGC 7020 morphol-
ogy can be reproduced. Although such a morphology is in principle
possible, it should be rare, because it would necessitate that a con-
siderable amount of material be on regular orbits trapped around
periodic orbits in a very narrow energy interval. Indeed the hexag-
onal orbits with cusps on the major axis are on the unstable branch
of the tangent bifurcation.
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